Live

The Marseille Cancer Research Center celebrates its 50th anniversary ! -

Mar 2015 Neuron

Chronic stress induces anxiety via an amygdalar intracellular cascade that impairs endocannabinoid signaling.

Authors

Qin Z, Zhou X, Pandey NR, Vecchiarelli HA, Stewart CA, Zhang X, Lagace DC, Béïque JC, Stewart AF, Hill MN, Chen HH

Summary

Collapse of endocannabinoid (eCB) signaling in the amygdala contributes to stress-induced anxiety, but the mechanisms of this effect remain unclear. eCB production is tied to the function of the glutamate receptor mGluR5, itself dependent on tyrosine phosphorylation. Herein, we identify a novel pathway linking eCB regulation of anxiety through phosphorylation of mGluR5. Mice lacking LMO4, an endogenous inhibitor of the tyrosine phosphatase PTP1B, display reduced mGluR5 phosphorylation, eCB signaling, and profound anxiety that is reversed by genetic or pharmacological suppression of amygdalar PTP1B. Chronically stressed mice exhibited elevated plasma corticosterone, decreased LMO4 palmitoylation, elevated PTP1B activity, reduced amygdalar eCB levels, and anxiety behaviors that were restored by PTP1B inhibition or by glucocorticoid receptor antagonism. Consistently, corticosterone decreased palmitoylation of LMO4 and its inhibition of PTP1B in neuronal cells. Collectively, these data reveal a stress-responsive corticosterone-LMO4-PTP1B-mGluR5 cascade that impairs amygdalar eCB signaling and contributes to the development of anxiety.

Read the article