Live

The Marseille Cancer Research Center celebrates its 50th anniversary ! -

Jul 2013 Cancer cell

Directed phenotype switching as an effective antimelanoma strategy.

Authors

Sáez-Ayala M, Sánchez-Del-Campo L, Fernández-Pérez MP, Chazarra S, Freter R, Middleton M, Piñero-Madrona A, Cabezas-Herrera J, Goding CR, Rodríguez-López JN

Summary

Therapeutic resistance in melanoma and other cancers arises via irreversible genetic, and dynamic phenotypic, heterogeneity. Here, we use directed phenotype switching in melanoma to sensitize melanoma cells to lineage-specific therapy. We show that methotrexate (MTX) induces microphthalmia-associated transcription factor (MITF) expression to inhibit invasiveness and promote differentiation-associated expression of the melanocyte-specific Tyrosinase gene. Consequently, MTX sensitizes melanomas to a tyrosinase-processed antifolate prodrug 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (TMECG), that inhibits the essential enzyme DHFR with high affinity. The combination of MTX and TMECG leads to depletion of thymidine pools, double-strand DNA breaks, and highly efficient E2F1-mediated apoptosis in culture and in vivo. Importantly, this drug combination delivers an effective and tissue-restricted antimelanoma therapy in vitro and in vivo irrespective of BRAF, MEK, or p53 status.

Read the article