For3D: Full organ reconstruction in 3D, an automatized tool for deciphering the complexity of lymphoid organs.
Authors
Sergé A, Aurrand-Lions M, Imhof BA, Irla M
Summary
To decipher the complex topology of lymphoid structures, we developed an automated process called Full Organ Reconstruction in 3D (For3D). A dedicated image-processing pipeline is applied to entire collections of immunolabeled serial sections, acquired with a slide-scanning microscope. This method is automated, flexible and readily applicable in two days to frozen or paraffin-embedded organs stained by fluorescence or brightfield immunohistochemistry. 3D-reconstructed organs can be visualized, rotated and analyzed to quantify substructures of interest. Usefulness of For3D is exemplified here through topological analysis of several mouse lymphoid organs exhibiting a complex organization: (i) the thymus, composed of two compartments, a medulla intricately imbricated into a surrounding cortex, (ii) lymph nodes, also highly compartmentalized into cortex, paracortex and medulla and (iii) the vascularization of an EG7 primary thymoma. This open-source algorithm, based on ImageJ and Matlab scripts, offers a user-friendly interface and is widely applicable to any organ or tissue, hence readily adaptable to a broad range of biomedical samples.
Read the article