Live

The Marseille Cancer Research Center celebrates its 50th anniversary ! -

Dec 2014 Cancer research

ITPR1 protects renal cancer cells against natural killer cells by inducing autophagy.

Authors

Messai Y, Noman MZ, Hasmim M, Janji B, Tittarelli A, Boutet M, Baud V, Viry E, Billot K, Nanbakhsh A, Ben Safta T, Richon C, Ferlicot S, Donnadieu E, Couve S, Gardie B, Orlanducci F, Albiges L, Thiery J, Olive D, Escudier B, Chouaib S

Summary

Clear cell renal cell carcinomas (RCC) frequently display inactivation of von Hippel-Lindau (VHL) gene leading to increased level of hypoxia-inducible factors (HIF). In this study, we investigated the potential role of HIF2α in regulating RCC susceptibility to natural killer (NK) cell-mediated killing. We demonstrated that the RCC cell line 786-0 with mutated VHL was resistant to NK-mediated lysis as compared with the VHL-corrected cell line (WT7). This resistance was found to require HIF2α stabilization. On the basis of global gene expression profiling and chromatin immunoprecipitation assay, we found ITPR1 (inositol 1,4,5-trisphosphate receptor, type 1) as a direct novel target of HIF2α and that targeting ITPR1 significantly increased susceptibility of 786-0 cells to NK-mediated lysis. Mechanistically, HIF2α in 786-0 cells lead to overexpression of ITPR1, which subsequently regulated the NK-mediated killing through the activation of autophagy in target cells by NK-derived signal. Interestingly, both ITPR1 and Beclin-1 silencing in 786-0 cells inhibited NK-induced autophagy and subsequently increased granzyme B activity in target cells. Finally, in vivo ITPR1 targeting significantly enhanced the NK-mediated tumor regression. Our data provide insight into the link between HIF2α, the ITPR1-related pathway, and natural immunity and strongly suggest a role for the HIF2α/ITPR1 axis in regulating RCC cell survival.

Read the article