Live

The Marseille Cancer Research Center celebrates its 50th anniversary ! -

Jan 2011 Cancer immunology, immunotherapy : CII

Natural killer cells and malignant haemopathies: a model for the interaction of cancer with innate immunity.

Authors

Sanchez CJ, Le Treut T, Boehrer A, Knoblauch B, Olive D, Costello RT

Summary

Despite recent progress in the therapeutic approach of malignant haemopathies, their prognoses remain frequently poor. Immunotherapy offers an alternative of great interest in this context but defect or abnormal expression of human leukocyte antigens (HLA), frequently observed in cancer cells, limits its efficiency. Natural killer (NK) cells, which are able to kill target cells in a HLA-independent way, represent a novel tool in the treatment of haematological malignancies. Abnormal NK cytolytic function is observed in all the haematological malignancies studied, such as acute leukaemia, myelodysplastic syndromes or chronic myeloid/lymphoid leukaemia. Several mechanisms are involved in the alterations of NK cytotoxicity: decreased expression of activating receptors, increased expression of inhibitory receptors or defective expression of NK ligands on target cells. Further studies are needed to identify how each type of haematological malignancy escapes from the innate immune response. Attempts to increase the expression of activating receptors, to counteract inhibitory receptors expression, or to increase NK cell cytotoxic capacities could overcome tumour escape from innate immunity. These therapies are based on monoclonal antibodies or culture of NK cells in presence of cytokines or dendritic cells. Moreover, many novel drugs used in haematological malignancies [tyrosine kinase inhibitors, IMIDs(®), proteasome inhibitors, demethylating agents, histone deacetylase inhibitors (HDACis), histamine dihydrochloride] display interesting immunomodulatory properties that affect NK cells. These data suggest that combined modalities associating cytotoxic drugs with innate immunity modulators may represent a major breakthrough in tumour eradication.

Read the article