Aug 2009 Nature cell biology

A two-step model for senescence triggered by a single critically short telomere.

Auteurs

Abdallah P, Luciano P, Runge KW, Lisby M, Géli V, Gilson E, Teixeira MT

Résumé

Telomeres protect chromosome ends from fusion and degradation. In the absence of a specific telomere elongation mechanism, their DNA shortens progressively with every round of replication, leading to replicative senescence. Here, we show that telomerase-deficient cells bearing a single, very short telomere senesce earlier, demonstrating that the length of the shortest telomere is a major determinant of the onset of senescence. We further show that Mec1p-ATR specifically recognizes the single, very short telomere causing the accelerated senescence. Strikingly, before entering senescence, cells divide for several generations despite complete erosion of their shortened telomeres. This pre-senescence growth requires RAD52 (radiation sensitive) and MMS1 (methyl methane sulfonate sensitive), and there is no evidence for major inter-telomeric recombination. We propose that, in the absence of telomerase, a very short telomere is first maintained in a pre-signalling state by a RAD52-MMS1-dependent pathway and then switches to a signalling state leading to senescence through a Mec1p-dependent checkpoint.

Lire l‘article