En direct

Géraldine Guasch (CRCM) - Publication dans Nature Communications -

Jan 2014 Haematologica

Array comparative genomic hybridization and sequencing of 23 genes in 80 patients with myelofibrosis at chronic or acute phase.


Brecqueville M, Rey J, Devillier R, Guille A, Gillet R, Adélaide J, Gelsi-Boyer V, Arnoulet C, Chaffanet M, Mozziconacci MJ, Vey N, Birnbaum D, Murati A


Myelofibrosis is a myeloproliferative neoplasm that occurs de novo (primary myelofibrosis) or results from the progression of polycythemia vera or essential thrombocytemia (hereafter designated as secondary myelofibrosis or post-polycythemia vera/ essential thrombocythemia myelofibrosis). To progress in the understanding of myelofibrosis and to find molecular prognostic markers we studied 104 samples of primary and secondary myelofibrosis at chronic (n=68) and acute phases (n=12) from 80 patients, by using array-comparative genomic hybridization and sequencing of 23 genes (ASXL1, BMI1, CBL, DNMT3A, EZH2, IDH1/2, JAK2, K/NRAS, LNK, MPL, NF1, PPP1R16B, PTPN11, RCOR1, SF3B1, SOCS2, SRSF2, SUZ12, TET2, TP53, TRPS1). We found copy number aberrations in 54% of samples, often involving genes with a known or potential role in leukemogenesis. We show that cases carrying a del(20q), del(17) or del(12p) evolve in acute myeloid leukemia (P=0.03). We found that 88% of the cases were mutated, mainly in signaling pathway (JAK2 69%, NF1 6%) and epigenetic genes (ASXL1 26%, TET2 14%, EZH2 8%). Overall survival was poor in patients with more than one mutation (P=0.001) and in patients with JAK2/ASXL1 mutations (P=0.02). Our study highlights the heterogeneity of myelofibrosis, and points to several interesting copy number aberrations and genes with diagnostic and prognostic impact.

Lire l‘article