Time-limited alterations in cortical activity of a knock-in mice model of KCNQ2-related developmental and epileptic encephalopathy.
Auteurs
Biba N, Becq H, Pallesi-Pocachard E, Sarno S, Granjeaud S, Montheil A, Kurz M, Villard L, Milh M, Santini PL, Aniksztejn L
Résumé
The electrophysiological impact of the pathogenic c.821C>T mutation of the KCNQ2 gene (p.T274M variant in Kv7.2 subunit) related to Developmental and Epileptic Encephalopathy has been analyzed both in vivo and ex-vivo in layers II/III and V of motor cortical slice from a knock-in mice model during development at neonatal, post-weaning and juvenile stages. M current density and conductance are decreased and excitability of layers II/III pyramidal cells is increased in slices from neonatal and post-weaning KI mice but not from juvenile KI mice. M current and excitability of layer V pyramidal cells are impacted in KI mice only at post-weaning stage. Spontaneous GABAergic network-driven events are recorded until post-weaning stage and their frequency are increased in layers II/III of the KI mice. KI mice displayed spontaneous seizures preferentially at post-weaning rather than at juvenile stages.
Lire l‘article