En direct

Le Centre de Recherche en Cancérologie de Marseille fête ses 50 ans ! -

08 2016 DNA repair

Tolerance of lesions in E. coli: Chronological competition between Translesion Synthesis and Damage Avoidance.

Auteurs

Fuchs RP

Résumé

Lesion tolerance pathways allow cells to proceed with replication despite the presence of replication-blocking lesions in their genome. Following transient fork stalling, replication resumes downstream leaving daughter strand gaps opposite replication-blocking lesions. The existence and repair of these gaps have been know for decades and are commonly referred to as postreplicative repair [39,38] (Rupp, 2013; Rupp and Howard-Flanders, 1968). This paper analyzes the interaction of the pathways involved in the repair of these gaps. A key repair intermediated is formed when RecA protein binds to these gaps forming ssDNA.RecA filaments establishing the so-called SOS signal. The gaps are either « repaired » by Translesion Synthesis (TLS), a process that involves the transient recruitment of a specialized DNA polymerase that copies the lesion with an intrinsic risk of fixing a mutation opposite the lesion site, or by Damage Avoidance, an error-free pathway that involves homologous recombination with the sister chromatid (Homology Directed Gap Repair: HDGR). We have developed an assay that allows one to study the partition between TLS and HDGR in the context of a single replication-blocking lesion present in the E. coli chromosome. The level of expression of the TLS polymerases controls the extent of TLS. Our data show that TLS is implemented first with great parsimony, followed by abundant recombination-based tolerance events. Indeed, the substrate for TLS, i.e., the ssDNA.RecA filament, persists for only a limited amount of time before it engages in an early recombination intermediates (D-loop) with the sister chromatid. Time-based competition between TLS and HDGR is set by mere sequestration of the TLS substrates into early recombination intermediates. Most gaps are subsequently repaired by Homology Directed Gap Repair (HDGR), a pathway that involves RecA. Surprisingly, however, in the absence of RecA, some cells manage to divide and form colonies at the expense of losing the damage-containing chromatid.

Lire l‘article