En direct

Le Centre de Recherche en Cancérologie de Marseille fête ses 50 ans ! -

Sep 2013 ACS chemical biology

Lipo-chitooligosaccharidic symbiotic signals are recognized by LysM receptor-like kinase LYR3 in the legume Medicago truncatula.

Auteurs

Fliegmann J, Canova S, Lachaud C, Uhlenbroich S, Gasciolli V, Pichereaux C, Rossignol M, Rosenberg C, Cumener M, Pitorre D, Lefebvre B, Gough C, Samain E, Fort S, Driguez H, Vauzeilles B, Beau JM, Nurisso A, Imberty A, Cullimore J, Bono JJ

Résumé

While chitooligosaccharides (COs) derived from fungal chitin are potent elicitors of defense reactions, structurally related signals produced by certain bacteria and fungi, called lipo-chitooligosaccharides (LCOs), play important roles in the establishment of symbioses with plants. Understanding how plants distinguish between friend and foe through the perception of these signals is a major challenge. We report the synthesis of a range of COs and LCOs, including photoactivatable probes, to characterize a membrane protein from the legume Medicago truncatula. By coupling photoaffinity labeling experiments with proteomics and transcriptomics, we identified the likely LCO-binding protein as LYR3, a lysin motif receptor-like kinase (LysM-RLK). LYR3, expressed heterologously, exhibits high-affinity binding to LCOs but not COs. Homology modeling, based on the Arabidopsis CO-binding LysM-RLK AtCERK1, suggests that LYR3 could accommodate the LCO in a conserved binding site. The identification of LYR3 opens up ways for the molecular characterization of LCO/CO discrimination.

Lire l‘article